Shashank Chaudhary

(448) 500-6131 | Tallahassee, FL | Portfolio | s.chaudhary2k25@gmail.com | linkedin.com/in/shashch99

TECHNICAL SKILLS

Design and Analysis: Adams CAR, AutoCAD, ANSYS, Catia V5/V6, Creo, Pro E, Siemens NX, SolidWorks.
 Product Lifecycle Management (PLM): SmarTeam, Teamcenter, Windchill.
 Languages: Arduino, C/C++, Curve Fitting, MATLAB, Python, STM32.
 Manufacturing: ASME Y14.5, GD&T, Laser cutting, 3D Printing, Sheet metal, Injection Molding, Die Casting/cutting.

EDUCATION

Master of Science, Mechanical Engineering, Florida State University, Tallahassee, FL | GPA- 3.53/4 | Aug 2023 - May 2025

Bachelor of Science, Mechanical Engineering, Madan Mohan Malaviya University of Technology, India | GPA- 3.3/4 | Jul 2017 - Aug 2021

PROFESSIONAL EXPERIENCES

DANFOSS TURBOCOR, Tallahassee, Florida | Mechatronics Engineering Intern | Sept 2024 - Present

- Led change management for 3 chiller systems, improving sensor accuracy by 10% through p-h diagram validation and sensor analysis.
- Commissioned systems and performed testing to ensure sensor accuracy within 0.5% using calibration tests and instrumentation, including accelerometers, validating system performance across the application range.
- Developed 3D models and 2D drawings using Catia for product and fixture design, applying machine design principles, adhering to ASME Y14.5 standards, and analyzed potential failure modes for 2 compressor models.
- Performed Finite Element Analysis on 7 shaft kits using ANSYS, applying solid mechanicals principles, and conducting model validation to
 ensure accuracy and reliability of the analysis results.
- Utilized manual machine shop equipment and measurement equipment to fabricate and test prototypes, ensuring precision and accuracy in component manufacturing.

MECHANICAL ENGINEERING DEPARTMENT, FSU, Tallahassee, Florida

Teaching Assistant | Jan 2024 - Present

- Taught and mentored 50+ engineering students through lab exercises, boosting student engagement and hands-on learning, which improved average practical exam scores by 15%.
- Evaluated 100+ student assignments and projects, providing feedback to enhance understanding of mechanical engineering principles.

Research Assistant | Jun 2024 - Dec 2024

- Devised and tested a thermoelectric generator prototype, optimizing performance through Heat transfer analysis to support carbon neutrality.
- Conducted data analysis of industrial process heat decarbonization, generating reports based on 2 industrial site visits to recommend energysaving techniques for the DOE Industrial Assessment Center project.

SONA COMSTAR, Gurugram, India | Graduate Engineering Trainee | Nov 2021 – May 2023

- Accelerated new product development by 20% through cross-functional coordination and material selection, contributing to **BOM** creation.
- Ensured GD&T and tolerance compliance; conducted stack-up analysis and DFMEA/PFMEA to mitigate failure risks.
- Improved design for manufacturability and assembly (DFM/DFA), cutting development time by 20% using CAD tools for modeling, simulation, and drafting, and operating CNC mill and CNC routers for prototyping.
- Optimized material and design for **EV/hybrid** differential assemblies, achieving 5% weight and 15% NVH reduction for enhanced efficiency and cost savings.

SPONSORED PROJECTS

SUPRA SAE INDIA STUDENT FORMULA, Formula SAE | Buddha International Circuit, India | Nov 2018 - Jul 2019

- Co-headed a team of 15 members, managing project timelines and resources effectively, and secured All India Rank 30 out of 128 teams.
- Developed vehicle chassis and components in **SolidWorks**, ensuring 100% compliance with **SAE** regulations.
- Devised the design using **Finite Element Analysis** principles, resulting in an **83**-kg weight reduction.
- Engineered a gear-by-wire system, decreasing shift times by 40% and increasing cockpit space by 15% for enhanced driver ergonomics.

BAJA SAE INDIA STUDENT FORMULA | IIT Ropar, India | Jun 2018 - Mar 2019

- Spearheaded powertrain optimization initiatives, enhancing engine efficiency by 12%, achieving All India Rank 33.
- Engineered prototypes to ensure 100% compliance with SAE rules and regulations and secured sponsorship of \$4000.

ACADEMIC PROJECTS

- Double Wishbone Suspension System Design FSU, Nov 2023 Designed in Creo and analyzed in MSC Adams, optimized geometry for handling and tire wear.
- Seeding Mechanism Design and Analysis MMMUT, Oct 2020–Jul 2021 Led design and simulation of a row-based hand-pulled seeder; collaborated in a 4-member team.
- Waste Plastic to Fuel Conversion MMMUT, Jun–Sep 2020 Performed theoretical analysis of pyrolysis process; developed a detailed process report.
- Arduino-Based Surveillance Drone MMMUT, Aug–Oct 2019 Built an aluminum-frame drone with MPU6050 and wireless camera; programmed using Arduino IDE.

MECHATRONICS ENGINEERING INTERN AT DANFOSS

XDesign Projects

FORMULA SAE 2019

What?

- Designed and fabricated a singleseat formula racing car under SAEINDIA regulations.
- Performed a suspension analysis to initiate the design process

How?

- Contributed as a core design engineer in a 15-member team,
- Responsible for steering, rims, seat, and chassis components using SolidWorks and CATIA adhering to GD&T.

 Successfully passed all technical inspections and ran on India's premier racetrack (BIC), securing All India Rank 36 among university teams.

Results

• Reduced 83 kgs of weight utilizing **FEA**.

RIM DESIGN FOR FORMULA SAE

What?

• Designed a 15-inch alloy wheel rim for a Formula SAE race car to match the exact specifications of the physical rim used in the vehicle.

How?

- Used precision measurements from the actual rim and modeled it in SolidWorks, incorporating key geometric features such as hub bolt patterns, ventilation cutouts, and offset.
- Performed stress and fatigue analysis using **ANSYS** to validate structural integrity under cornering and vertical loads based on race conditions.

Results

- Achieved a highly accurate digital twin of the physical rim with dimensional tolerances under 0.5 mm.
- Simulation showed safety factors >1.5 under maximum expected loads, enabling use of the model for dynamic vehicle simulations, assembly clearances, and future optimization.

MECHATRONICS ENGINEERING INTERN AT DANFOSS

BAJA SAE INDIA 2018

- Led the vehicle prototyping phase using a modular fabrication approach for quicker iteration.
- Conducted powertrain calculations including torque-speed matching for CVT tuning, gear ratio selection, and drivetrain layout to optimize for acceleration and rugged terrain.
- modeling and structural analysis, ensuring durability under extreme conditions.

Results

- Successfully built the first-ever BAJA vehicle from my college to qualify for and complete the endurance race.
- Achieved 20% drivetrain efficiency gain over initial prototype via gear optimization and alignment.
- (approx. 9%) through design simplification and material selection.

DESIGN AND STATIC ANALYSIS OF SEEDING MECHANISM

What?

• Designed and analyzed a lowcost. manually operated seeding mechanism intended to optimize seed spacing and reduce labor for small-scale farms in rural India.

How?

- rotating-disc Developed а seed metering system in SolidWorks for Results uniform seed delivery and minimal • Completed detailed design and full clogging, targeting crops like maize and mustard.
- Performed static structural analysis in Solidworks Simulation to ensure frame integrity under soil resistance and operator load, validating a safety factor >2.5.

- CAD assembly with manufacturing drawings ready for prototyping.
- Project was not fabricated due to university workshop closures and funding delays during COVID-19 lockdowns.

What?

• Designed, analyzed, and prototyped • Used SolidWorks and ANSYS for CAD • Reduced total weight by 12 kg a single-seater off-road BAJA SAE vehicle, focusing on both the chassis and powertrain systems.

MECHATRONICS ENGINEERING INTERN AT DANFOSS

🖬 Analysis Projects

DOUBLE WISHBONE SUSPENSION DESIGN

How?

- Modeled the full suspension geometry in Creo, calculating critical dimensions like upper/lower arm lengths, track width, roll center height, and kingpin angle based on packaging and performance constraints.
- Transferred geometry and parameters to ADAMS Car to simulate the system's behavior under various maneuvers including cornering, bump, and braking events.

Results

- Reduced body roll by 12%, improved tire contact consistency by 15%, and minimized bump steer to <1.5 mm over operational range.
- Delivered a high-fidelity digital twin of the suspension system, validated through simulations and ready for physical prototyping.

PULLING HANDLE AND FURROW BLADE - STATIC LOAD ANALYSIS

What?

What?

Designed

suspension

formula-style

optimize handling,

and

analyzed a double wishbone

stability, and ride performance

under competitive conditions.

system

race

dynamically

for

cornering

car

а

to

 Analyzed the pulling handle furrow and blade components of a manual seeding mechanism to ensure structural integrity under field load conditions.

7.132+133 4.333+205 3.393+205 3.393+205 4.3793+205 4.3793+205 4.3393+205 3.393+205 2.2939+205 1.7793+205 3.593+2055 5.595+205 5.595+205 5.595+205 5.595+205 5.595+205 5.595+2055+2055+205

 Modeled the pulling handle and blade in SolidWorks based on ergonomic and functional dimensions.

- Applied boundary conditions simulating userapplied pulling force (~300 N) and soil reaction forces on the blade (approx. 150 N distributed).
- Conducted static structural analysis in SolidWorks Simulation, evaluating equivalent stress, deformation, and factor of safety.

- Achieved a minimum factor of safety of 2.4 under full load.
- Reduced max stress on the blade tip by 18% through profile refinement.
- Ensured that both components could withstand repeated field use without yielding.

MECHATRONICS ENGINEERING INTERN AT DANFOSS

WHEEL HUB AND FRONT UPRIGHT - STATIC LOAD-BEARING ANALYSIS

What?

How?

- Conducted static structural analysis of the wheel hub and front upright assemblies for an FSAE race car to ensure safety and performance under high-speed maneuvering and braking.
- Designed geometry in Catia V5, considering packaging, suspension geometry, and steering constraints.
- Simulated in SolidWorks Simulation with boundary conditions mimicking peak cornering (~2g lateral), braking (~1.5g), and vertical loads (~1000 N).
- Assessed Von Mises stress strain displacement, and calculated the factor of safety.

Results

- performance • Design met targets with a minimum factor of safety of 2.1.
- Confirmed yielding no or deflection excessive under simulated loads.
- Final design approved for CNC machining and assembly into the suspension system.

MECHATRONICS ENGINEERING INTERN AT DANFOSS

Robotics & Control Projects

OPTIMAL CONTROL OF SOLAR TRACKING PANEL

What?

 Designed and simulated a solar tracker that maximizes solar incidence using а controloptimized dual-axis mechanism.

Comparison of

20

10

0

-10

20

Vertical (+Z)

How?

- Formulated the system as a second-order nonlinear plant and designed а feedback controller in MATLAB.
- Applied optimal control theory to compute energy-maximizing trajectories for the panel angle.
- simulations Ran extensive comparing open-loop VS. feedback-controlled tracking.

Results

- Increased simulated solar capture by energy 32% compared to fixed-angle panels.
- Controller successfully adapted disturbances such to as actuator delay or cloud occlusion.

OPTIMAL CONTROL OF BALL ON PLATE SYSTEM

2-D Free-Body Diagram of Simulated System.

How?

- Modeled the system as a multivariable nonlinear control problem.
- Implemented PD control for each axis using MATLAB, tuned gains for fast response and minimal overshoot.
- Simulated ball dynamics under initial displacement and noise.

Results

- Stabilized ball from 10 cm offset in under 1 seconds.
- Maintained position within ±1 under random cm external disturbances.

What?

 Simulated closed-loop а control system to balance a ball on a flat plate.

MECHATRONICS ENGINEERING INTERN AT DANFOSS

FABRICATION OF ARDUINO-BASED SURVEILLANCE DRONE

What?

• Designed and built a surveillance drone prototype using Arduino as the primary flight controller, incorporating onboard sensors and a wireless camera for aerial monitoring.

How?

- Used Arduino with MPU6050 sensor for flight control and stabilization. Built the initial aluminum frame and programmed flight algorithms in Arduino IDE.
- Added a wireless camera and tested transmission. Later compared with a carbon fiber frame and KK2.1.5 flight controller for performance evaluation.

Results

 Achieved stable flight and effective video transmission. The carbon fiber frame improved durability and flight time. while the KK2.1.5 controller offered better control compared to the Arduino prototype.